4 resultados para premembrane and envelope gene junction

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de dout. em Biologia, especialidade de Biologia Molecular, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Univ. do Algarve

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ecotoxicology a major focus is in the aquatic environment, not only because it presents a great economic value to man but it is an ecosystem widely affected by the growing anthropogenic pollution. Most of the studies performed relate to adverse effects in development, reproductive or endocrine disruption but little is known about the possible effects in bone formation and skeletal development. In this study, we set out to evaluate the effects of 8 aquatic pollutants on the skeletal development using an in vivo system, the zebrafish larvae aged 20 days post-fertilization, through chronic exposure. Several endpoints were considered such as the cumulative mortality, total length, occurrence of skeletal deformities and marker gene expression. We were able to establish LD50 values for some pollutants, like 3-methylcholanthrene, lindane, diclofenac, cobalt and vanadate and found that the total length was not affected by any of the pollutants tested. Cobalt was the most harmful chemical to affect hatching time, severely affecting the ability of the zebrafish embryos to hatch and overall the number of deformities increased upon exposure to tested chemicals but no patterns of deformities were identified. We also propose that 3-methylcholanthrene has an osteogenic effect, affecting osteoblast and osteoclast function and that op levels can act as a mediator of 3-methylcholanthrene toxic stress to the osteoblast. In turn we found naphthalene to probably have a chondrogenic effect. Our results provided new insights into the potential osteotoxicity of environmental pollutants. Future studies should aim at confirming these preliminary data and at determining mechanisms of osteotoxicity.